Entrer un problème...
Algèbre linéaire Exemples
[371052318521]⎡⎢⎣371052318521⎤⎥⎦
Étape 1
Write as an augmented matrix for Ax=0Ax=0.
[371005231085210]⎡⎢
⎢⎣371005231085210⎤⎥
⎥⎦
Étape 2
Étape 2.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
Étape 2.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[33731303035231085210]⎡⎢
⎢⎣33731303035231085210⎤⎥
⎥⎦
Étape 2.1.2
Simplifiez R1R1.
[17313005231085210]⎡⎢
⎢⎣17313005231085210⎤⎥
⎥⎦
[17313005231085210]⎡⎢
⎢⎣17313005231085210⎤⎥
⎥⎦
Étape 2.2
Perform the row operation R2=R2-5R1R2=R2−5R1 to make the entry at 2,12,1 a 00.
Étape 2.2.1
Perform the row operation R2=R2-5R1R2=R2−5R1 to make the entry at 2,12,1 a 00.
[17313005-5⋅12-5(73)3-5(13)1-5⋅00-5⋅085210]⎡⎢
⎢
⎢
⎢⎣17313005−5⋅12−5(73)3−5(13)1−5⋅00−5⋅085210⎤⎥
⎥
⎥
⎥⎦
Étape 2.2.2
Simplifiez R2.
[17313000-293431085210]
[17313000-293431085210]
Étape 2.3
Perform the row operation R3=R3-8R1 to make the entry at 3,1 a 0.
Étape 2.3.1
Perform the row operation R3=R3-8R1 to make the entry at 3,1 a 0.
[17313000-29343108-8⋅15-8(73)2-8(13)1-8⋅00-8⋅0]
Étape 2.3.2
Simplifiez R3.
[17313000-29343100-413-2310]
[17313000-29343100-413-2310]
Étape 2.4
Multiply each element of R2 by -329 to make the entry at 2,2 a 1.
Étape 2.4.1
Multiply each element of R2 by -329 to make the entry at 2,2 a 1.
[1731300-329⋅0-329(-293)-329⋅43-329⋅1-329⋅00-413-2310]
Étape 2.4.2
Simplifiez R2.
[173130001-429-32900-413-2310]
[173130001-429-32900-413-2310]
Étape 2.5
Perform the row operation R3=R3+413R2 to make the entry at 3,2 a 0.
Étape 2.5.1
Perform the row operation R3=R3+413R2 to make the entry at 3,2 a 0.
[173130001-429-32900+413⋅0-413+413⋅1-23+413(-429)1+413(-329)0+413⋅0]
Étape 2.5.2
Simplifiez R3.
[173130001-429-329000-7429-12290]
[173130001-429-329000-7429-12290]
Étape 2.6
Multiply each element of R3 by -2974 to make the entry at 3,3 a 1.
Étape 2.6.1
Multiply each element of R3 by -2974 to make the entry at 3,3 a 1.
[173130001-429-3290-2974⋅0-2974⋅0-2974(-7429)-2974(-1229)-2974⋅0]
Étape 2.6.2
Simplifiez R3.
[173130001-429-32900016370]
[173130001-429-32900016370]
Étape 2.7
Perform the row operation R2=R2+429R3 to make the entry at 2,3 a 0.
Étape 2.7.1
Perform the row operation R2=R2+429R3 to make the entry at 2,3 a 0.
[17313000+429⋅01+429⋅0-429+429⋅1-329+429⋅6370+429⋅00016370]
Étape 2.7.2
Simplifiez R2.
[1731300010-33700016370]
[1731300010-33700016370]
Étape 2.8
Perform the row operation R1=R1-13R3 to make the entry at 1,3 a 0.
Étape 2.8.1
Perform the row operation R1=R1-13R3 to make the entry at 1,3 a 0.
[1-13⋅073-13⋅013-13⋅10-13⋅6370-13⋅0010-33700016370]
Étape 2.8.2
Simplifiez R1.
[1730-2370010-33700016370]
[1730-2370010-33700016370]
Étape 2.9
Perform the row operation R1=R1-73R2 to make the entry at 1,2 a 0.
Étape 2.9.1
Perform the row operation R1=R1-73R2 to make the entry at 1,2 a 0.
[1-73⋅073-73⋅10-73⋅0-237-73(-337)0-73⋅0010-33700016370]
Étape 2.9.2
Simplifiez R1.
[1005370010-33700016370]
[1005370010-33700016370]
[1005370010-33700016370]
Étape 3
Use the result matrix to declare the final solution to the system of equations.
x1+537x4=0
x2-337x4=0
x3+637x4=0
Étape 4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4]=[-5x4373x437-6x437x4]
Étape 5
Write the solution as a linear combination of vectors.
[x1x2x3x4]=x4[-537337-6371]
Étape 6
Write as a solution set.
{x4[-537337-6371]|x4∈R}